
Custom Graphic

Equalizer Filter

Carlos Rafael Gimenes das Neves

Allow me to start by

telling a short story…

In the beginning

there was Winamp!

Cool! What kind of plugin can

I create for it?!

Hey, its equalizer doesn’t

follow ISO standards!

60 170 310 600 1k 3k 6k 14k 16k

That’s it! I will create a

new equalizer for

Winamp!

However… Hold on a

second…

Winamp already has plenty of

good equalizer plugins!

And most important…

What are equalizers

made of?!?!

Considering those points…

Why sticking to the idea…?

Considering those points…

Why sticking to the idea…?

Any reason is a good

reason to study and

listen to some music!

So, let’s get going!

Straight to the studies!

What could be

so difficult,

anyway?

Frequency domain

Time domain

Better think again!

A “while” later, I was at

least able to understand

what all that DSP jargon

meant

A “while” later, I was at

least able to understand

what all that DSP jargon

meant

Much later, an equalizer

came out…

…well, a sum of 10

isolated band-pass IIR

filters, actually

Going deeper into DSP, I

was introduced to FIR

filters, and the whole

concept of convolution

Which, in turn, led me to

Fourier Transform

That’s when an idea struck me

If I’m already going to

transform the audio into

frequency domain, why

not allowing the user

to adjust more than

10 bands?

That way the users

would be given more

power to fine tune

their equalizer!

It took a lot of time,

and also a lot of

studying, but the

result finally

came out a

few years ago!

Creating the filter

Obtain an array

of amplitudes

from the user

Stipulate L, the

filter’s length (L

must be a

power of 2 for

the FFT to work)

Map those

amplitudes into

M + 1 complex

numbers

(M = L / 2)

Apply the

inverse FFT on

the complex

numbers to

obtain the

filter’s response

in time domain

Apply the desired window

function on the first M + 1

samples, zeroing out the

rest (to smooth the filter,

improving the overlap-add

method)

Apply the FFT

on the samples

to obtain the

filter’s response

in frequency

domain again!

Creating the filter

Obtain an array

of amplitudes

from the user

Stipulate L, the

filter’s length (L

must be a

power of 2 for

the FFT to work)

Map those

amplitudes into

M + 1 complex

numbers

(M = L / 2)

Apply the

inverse FFT on

the complex

numbers to

obtain the

filter’s response

in time domain

Apply the desired window

function on the first M + 1

samples, zeroing out the

rest (to smooth the filter,

improving the overlap-add

method)

Apply the FFT

on the samples

to obtain the

filter’s response

in frequency

domain again!

Applying the filter

Fill an array

called DATA

with M audio

samples + M

zeroes

Apply the FFT

on DATA, which

results in M + 1

complex

numbers

Multiply the

filter by the

M + 1 complex

numbers

Apply the

inverse FFT on

the complex

numbers,

obtaining a

filtered version

of DATA

Add the M

samples from a

secondary array,

called LAST, to

the first M

samples of

DATA

Copy the last M

samples from

DATA into LAST,

and repeat the

whole process

as necessary!

Applying the filter

Fill an array

called DATA

with M audio

samples + M

zeroes

Apply the FFT

on DATA, which

results in M + 1

complex

numbers

Multiply the

filter by the

M + 1 complex

numbers

Apply the

inverse FFT on

the complex

numbers,

obtaining a

filtered version

of DATA

Add the M

samples from a

secondary array,

called LAST, to

the first M

samples of

DATA

Copy the last M

samples from

DATA into LAST,

and repeat the

whole process

as necessary!

Enough talk!

Let’s cut to the

demonstration!

The source code is

available at:

https://github.com/

carlosrafaelgn/

GraphicalFilterEditor

The project can be

tested at:

carlosrafaelgn.com.br/

GraphicalFilterEditor

Thank you!!!

Questions?!

Suggestions?!

Leather texture: fantasystock.deviantart.com/art/Cracked-Leather-Texture-1-66541079

Light waves: csys-279.deviantart.com/art/Light-Wave-Wallpaper-193489523

